21 research outputs found

    On the Stability of Approximation for Hamiltonian Path Problems

    Get PDF
    We consider the problem of finding a cheapest Hamiltonian path of a complete graph satisfying a relaxed triangle inequality, i.e., such that for some parameter β > 1, the edge costs satisfy the inequality c({x, y}) ≤β (c({x, z}) + c({z, y})) for every triple of vertices x, y, z. There are three variants of this problem, depending on the number of prespecified endpoints: zero, one, or two. For metric graphs there exist approximation algorithms, with approximation ratio 3/2 for the first two variants and 5/3 for the latter one. Using results on the approximability of the Travelling Salesman Problem with input graphs satisfying the relaxed triangle inequality, we obtain for our problem approximation algorithms with ratio in(β 2 + β,3/2 β 2) for zero or one respecified endpoints, and 5/3 β2 for two endpoints

    On the Approximability of TSP on Local Modifications of Optimally Solved Instances

    Get PDF
    Given an instance of TSP together with an optimal solution, we consider the scenario in which this instance is modified locally, where a local modification consists in the alteration of the weight of a single edge. More generally, for a problem U, let LM-U (local-modification-U) denote the same problem as U, but in LM-U, we are also given an optimal solution to an instance from which the input instance can be derived by a local modification. The question is how to exploit this additional knowledge, i.e., how to devise better algorithms for LM-U than for U. Note that this need not be possible in all cases: The general problem of LM-TSP is as hard as TSP itself, i.e., unless P=NP, there is no polynomial-time p(n)-approximation algorithm for LM-TSP for any polynomial p. Moreover, LM-TSP where inputs must satisfy the β-triangle inequality (LM-Δβ-TSP) remains NP-hard for all β>½. However, for LM-Δ-TSP (i.e., metric LM-TSP), we will present an efficient 1.4-approximation algorithm. In other words, the additional information enables us to do better than if we simply used Christofides' algorithm for the modified input. Similarly, for all 1<β<3.34899, we achieve a better approximation ratio for LM-Δ-TSP than for Δβ-TSP. For ½≤β<1, we show how to obtain an approximation ratio arbitrarily close to 1, for sufficiently large input graphs

    Reusing optimal TSP solutions for locally modified input instances : Extended abstract

    Get PDF
    Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modification operation, let lm-U (local-modification- U) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i. e., whether lm-U is computationally more tractable than U. Here, we give non-trivial examples both of problems where this is and problems where this is not the case4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI

    6 Access Methods and Query Processing Techniques

    Get PDF
    The performance of a database management system (DBMS) is fundamentally dependent on the access methods and query processing techniques available to the system. Traditionally, relational DBMSs have relied on well-known access methods, such as the ubiquitous B +-tree, hashing with chaining, and, in som

    Reusing optimal TSP solutions for locally modified input instances : Extended abstract

    Get PDF
    Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modification operation, let lm-U (local-modification- U) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i. e., whether lm-U is computationally more tractable than U. Here, we give non-trivial examples both of problems where this is and problems where this is not the case4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI
    corecore